Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra. | g16+3/4g11+3/4g5 | g6 | −g9+g2 | g21 | g17 | g19 | g24 | g23 |
weight | 2ω1 | 2ω2 | 2ω2 | 4ω1 | 3ω1+ω2 | 3ω1+ω2 | 6ω1 | 4ω1+2ω2 |
Isotypical components + highest weight | V2ω1 → (2, 0) | V2ω2 → (0, 2) | V4ω1 → (4, 0) | V3ω1+ω2 → (3, 1) | V6ω1 → (6, 0) | V4ω1+2ω2 → (4, 2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 2ω2 0 −2ω2 | 4ω1 2ω1 0 −2ω1 −4ω1 | 3ω1+ω2 ω1+ω2 3ω1−ω2 −ω1+ω2 ω1−ω2 −3ω1+ω2 −ω1−ω2 −3ω1−ω2 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 4ω1+2ω2 2ω1+2ω2 4ω1 2ω2 2ω1 4ω1−2ω2 −2ω1+2ω2 0 2ω1−2ω2 −4ω1+2ω2 −2ω1 −2ω2 −4ω1 −2ω1−2ω2 −4ω1−2ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 2ω2 0 −2ω2 | 4ω1 2ω1 0 −2ω1 −4ω1 | 3ω1+ω2 ω1+ω2 3ω1−ω2 −ω1+ω2 ω1−ω2 −3ω1+ω2 −ω1−ω2 −3ω1−ω2 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 4ω1+2ω2 2ω1+2ω2 4ω1 2ω2 2ω1 4ω1−2ω2 −2ω1+2ω2 0 2ω1−2ω2 −4ω1+2ω2 −2ω1 −2ω2 −4ω1 −2ω1−2ω2 −4ω1−2ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M2ω2⊕M0⊕M−2ω2 | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | M3ω1+ω2⊕Mω1+ω2⊕M3ω1−ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−3ω1+ω2⊕M−ω1−ω2⊕M−3ω1−ω2 | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M4ω1+2ω2⊕M2ω1+2ω2⊕M4ω1⊕M2ω2⊕M2ω1⊕M4ω1−2ω2⊕M−2ω1+2ω2⊕M0⊕M2ω1−2ω2⊕M−4ω1+2ω2⊕M−2ω1⊕M−2ω2⊕M−4ω1⊕M−2ω1−2ω2⊕M−4ω1−2ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M2ω2⊕M0⊕M−2ω2 | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | 2M3ω1+ω2⊕2Mω1+ω2⊕2M3ω1−ω2⊕2M−ω1+ω2⊕2Mω1−ω2⊕2M−3ω1+ω2⊕2M−ω1−ω2⊕2M−3ω1−ω2 | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M4ω1+2ω2⊕M2ω1+2ω2⊕M4ω1⊕M2ω2⊕M2ω1⊕M4ω1−2ω2⊕M−2ω1+2ω2⊕M0⊕M2ω1−2ω2⊕M−4ω1+2ω2⊕M−2ω1⊕M−2ω2⊕M−4ω1⊕M−2ω1−2ω2⊕M−4ω1−2ω2 |