Processing math: 100%
Subalgebra A101+A21F14
27 out of 59
Computations done by the calculator project.

Subalgebra type: A101+A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A101 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: F14

Elements Cartan subalgebra scaled to act by two by components: A101: (6, 10, 14, 8): 20, A21: (0, 2, 2, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g5+g11+g16, g2+g9
Positive simple generators: 4g16+3g11+3g5, g9g2
Cartan symmetric matrix: (1/5001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (20004)
Decomposition of ambient Lie algebra: V4ω1+2ω2V6ω12V3ω1+ω2V4ω12V2ω2V2ω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 8) ; the vectors are over the primal subalgebra.g16+3/4g11+3/4g5g6g9+g2g21g17g19g24g23
weight2ω12ω22ω24ω13ω1+ω23ω1+ω26ω14ω1+2ω2
Isotypic module decomposition over primal subalgebra (total 7 isotypic components).
Isotypical components + highest weightV2ω1 → (2, 0)V2ω2 → (0, 2)V4ω1 → (4, 0)V3ω1+ω2 → (3, 1)V6ω1 → (6, 0)V4ω1+2ω2 → (4, 2)
Module label W1W2W3W4W5W6W7
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
4/3g16g11g5
8/3h4+14/3h3+10/3h2+2h1
2/3g5+2/3g11+2/3g16
Semisimple subalgebra component.
g9g2
2h32h2
2g22g9
g6
g3g3
2g6
g21
g8
g3+g3
2g8
2g21
g17
g13
g15
g4
g4
g15
g13
g17
g19
g10
g12
g7
g7
g12
g10
g19
g24
g22g20
2g16g11g5
4h42h3+2h1
4g5+4g116g16
10g20+10g22
20g24
g23
g14
g22g20
g9+g2
g11g5
2g18
2g1
2h3
2g1
2g18
2g52g11
2g22g9
2g202g22
4g14
4g23
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω1
0
2ω1
2ω2
0
2ω2
2ω2
0
2ω2
4ω1
2ω1
0
2ω1
4ω1
3ω1+ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
3ω1ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
4ω1+2ω2
2ω1+2ω2
4ω1
2ω2
2ω1
4ω12ω2
2ω1+2ω2
0
2ω12ω2
4ω1+2ω2
2ω1
2ω2
4ω1
2ω12ω2
4ω12ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω1
0
2ω1
2ω2
0
2ω2
2ω2
0
2ω2
4ω1
2ω1
0
2ω1
4ω1
3ω1+ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
3ω1ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
4ω1+2ω2
2ω1+2ω2
4ω1
2ω2
2ω1
4ω12ω2
2ω1+2ω2
0
2ω12ω2
4ω1+2ω2
2ω1
2ω2
4ω1
2ω12ω2
4ω12ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω1M0M2ω1M2ω2M0M2ω2M2ω2M0M2ω2M4ω1M2ω1M0M2ω1M4ω1M3ω1+ω2Mω1+ω2M3ω1ω2Mω1+ω2Mω1ω2M3ω1+ω2Mω1ω2M3ω1ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M4ω1+2ω2M2ω1+2ω2M4ω1M2ω2M2ω1M4ω12ω2M2ω1+2ω2M0M2ω12ω2M4ω1+2ω2M2ω1M2ω2M4ω1M2ω12ω2M4ω12ω2
Isotypic characterM2ω1M0M2ω1M2ω2M0M2ω2M2ω2M0M2ω2M4ω1M2ω1M0M2ω1M4ω12M3ω1+ω22Mω1+ω22M3ω1ω22Mω1+ω22Mω1ω22M3ω1+ω22Mω1ω22M3ω1ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M4ω1+2ω2M2ω1+2ω2M4ω1M2ω2M2ω1M4ω12ω2M2ω1+2ω2M0M2ω12ω2M4ω1+2ω2M2ω1M2ω2M4ω1M2ω12ω2M4ω12ω2

Semisimple subalgebra: W_{1}+W_{2}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00)
(0.00, 1.00)
0: (1.00, 0.00): (700.00, 300.00)
1: (0.00, 1.00): (200.00, 400.00)



Made total 58015 arithmetic operations while solving the Serre relations polynomial system.